
� ���
–
� ���

Ant System

Thomas Stützle �
Université Libre de Bruxelles

IRIDIA
Brussels, Belgium

Holger H. Hoos

University of British Columbia
Department of Computer Science

Vancouver, Canada

Abstract

Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method
for attacking hard combinatorial optimization problems. Yet, its performance, when com-
pared to more fine-tuned algorithms, was rather poor for large instances of traditional
benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Opti-
mization algorithms could be good alternatives to existing algorithms for hard combinato-
rial optimization problems, recent research in this ares has mainly focused on the develop-
ment of algorithmic variants which achieve better performance than AS.

In this article, we present �
	�� – ���� Ant System, an Ant Colony Optimization al-
gorithm derived from Ant System. �
	�� – ���� Ant System differs from Ant System in
several important aspects, whose usefulness we demonstrate by means of an experimental
study. Additionally, we relate one of the characteristics specific to ��� AS — that of using
a greedier search than Ant System — to results from the search space analysis of the com-
binatorial optimization problems attacked in this paper. Our computational results on the
Traveling Salesman Problem and the Quadratic Assignment Problem show that �
	�� –
���� Ant System is currently among the best performing algorithms for these problems.

Keywords: Ant Colony Optimisation, Search Space Analysis, Travelling Salesman
Problem, Quadratic Assignment Problem, Combinatorial Optimisation.

1 Introduction

Ant Colony Optimization (ACO) [13,8,14,11] is a recently developed, population-
based approach which has been successfully applied to several ��� -hard combina-
�

On leave from FG Intellektik, TU Darmstadt, Germany.

Preprint submitted to Elsevier Science 30 November 1999

torial optimization problems [5,7,12,19,20,29,35,45] (see [10,11] for an overview).
As the name suggests, ACO has been inspired by the behavior of real ant colonies,
in particular, by their foraging behavior. One of its main ideas is the indirect com-
munication among the individuals of a colony of agents, called (artificial) ants,
based on an analogy with trails of a chemical substance, called pheromone, which
real ants use for communication. The (artificial) pheromone trails are a kind of
distributed numeric information (called stigmergic information in [9]) which is
modified by the ants to reflect their experience accumulated while solving a par-
ticular problem. Recently, the Ant Colony Optimization (ACO) meta-heuristic has
been proposed to provide a unifying framework for most applications of ant algo-
rithms [11,10] to combinatorial optimization problems. Algorithms which actually
are instantiations of the ACO metaheuristic will be called ACO algorithms in the
following.

The first ACO algorithm, called Ant System (AS) [13,8,14], was applied to the
Traveling Salesman Problem (TSP). It gave encouraging results, yet its perfor-
mance was not competitive with state-of-the-art algorithms for the TSP. Therefore,
one important focus of research on ACO algorithms has been the introduction of
algorithmic improvements to achieve a much better performance. Typically, these
improved algorithms have been tested again on the TSP [12,47,6]. While they dif-
fer mainly in specific aspects of the search control, all these ACO algorithms are
based on a stronger exploitation of the search history to direct the ants’ search pro-
cess. Recent research on the search space characteristics of some combinatorial
optimization problems has shown that for many problems there exists a correlation
between the solution quality and the distance from very good or optimal solutions
[4,3,24,34]. Hence, it seems reasonable to assume that the concentration of the
search around the best solutions found during the search is the key aspect that led
to the improved performance shown by the modified ACO algorithms.

The
�����

–
��� � Ant System (

���
AS) algorithm discussed in this article

achieves a strong exploitation of the search history by allowing only the best so-
lutions to add pheromone during the pheromone trail update. Also, the use of a
rather simple mechanism for limiting the strengths of the pheromone trails effec-
tively avoids premature convergence of the search. Finally,

���
AS can easily

be extended by adding local search algorithms. In fact, the best performing ACO
algorithms for many different combinatorial optimization problems improve the so-
lutions generated by the ants with local search algorithms [12,19,47,45,5]. As our
empirical results show,

���
AS is currently one of the the best performing ACO

algorithms for the TSP and the Quadratic Assignment Problem (QAP).
The remainder of this paper is structured as follows. In Section 2, we introduce

ACO algorithms and discuss their application to the TSP, using Ant System as
a starting point. Next, we review some results from the search space analysis of
the TSP which show that solution quality and distance from a global optimum
are tightly correlated and we give new results for a similar analysis of the QAP
search space. In Section 4 we give details on the modifications of AS leading to
���

AS and present an experimental investigation showing the effectiveness of
these modifications. Section 5 gives results of our extensive experimental analysis

2

of
���

AS with additional local search for the TSP. In Section 6 we show that
���

AS is one of the best available algorithms for the QAP. In the concluding
Section 7 we briefly summarize our main results and point out directions for further
research.

2 Ant colony optimization

2.1 ACO algorithms

ACO algorithms make use of simple agents called ants which iteratively con-
struct candidate solution to a combinatorial optimization problem. The ants’ solu-
tion construction is guided by (artificial) pheromone trails and problem-dependent
heuristic information. In principle, ACO algorithms can be applied to any combina-
torial optimization problem by defining solution components which the ants use to
iteratively construct candidate solutions and on which they may deposit pheromone
(see [10,11] for more details). An individual ant constructs candidate solutions by
starting with an empty solution and then iteratively adding solution components
until a complete candidate solution is generated. We will call each point at which
an ant has to decide which solution component to add to its current partial solution
a choice point. After the solution construction is completed, the ants give feed-
back on the solutions they have constructed by depositing pheromone on solution
components which they have used in their solution. Typically, solution components
which are part of better solutions or are used by many ants will receive a higher
amount of pheromone and, hence, will more likely be used by the ants in future
iterations of the algorithm. To avoid the search getting stuck, typically before the
pheromone trails get reinforced, all pheromone trails are decreased by a factor � .

The ants’ solutions are not guaranteed to be optimal with respect to local changes
and hence may be further improved using local search methods. Based on this ob-
servation, the best performing ACO algorithms for many ��� -hard static combi-
natorial problems � are in fact hybrid algorithms combining probabilistic solution
construction by a colony of ants with local search algorithms [12,19,30,45,47,48].
In such hybrid algorithms, the ants can be seen as guiding the local search by con-
structing promising initial solutions, because ants preferably use solution compo-
nents which, earlier in the search, have been contained in good locally optimal
solutions.

In general, all ACO algorithms for static combinatorial problems follow a spe-
cific algorithmic scheme outlined in Figure 1. After the initialization of the phe-
romone trails and some parameters, a main loop is repeated until a termination
condition — which may be a certain number of solution constructions or a given
CPU-time limit — is met. In the main loop, first, the ants construct feasible solu-

� Static combinatorial problems are those in which all relevant problem data are available
before the start of the algorithm and do not change during the algorithm’s run. An example
for the latter case is the network routing problem in communication networks.

3

tions, then the generated solutions are possibly improved by applying local search,
and finally the pheromone trails are updated. It should be noted that the ACO meta-
heuristic [10,11] is more general than the algorithmic scheme given here.

�
procedure ACO algorithm for static combinatorial problems

Set parameters, initialize pheromone trails
while (termination condition not met) do

ConstructSolutions
ApplyLocalSearch % optional
UpdateTrails

end
end

Fig. 1. Algorithmic skeleton for ACO algorithms applied to static combinatorial prob-
lems.

2.2 Combinatorial optimization problems

Almost all ACO algorithms have initially been tested on the TSP [13,14,12,47,6].
In this article we focus on the TSP and the QAP as application domains for

���
AS.

2.2.1 The Traveling Salesman Problem
The TSP can be represented by a complete graph

��� �����
	��
with

�
being

the set of nodes, also called cities, and
	

being the set of arcs fully connecting the
nodes. Each arc

�����������	
is assigned a value ����� which represents the distance be-

tween cities

and
�
. The TSP then is the problem of finding a shortest closed tour

visiting each of the � � �����
nodes of

�
exactly once. For symmetric TSPs, the

distances between the cities are independent of the direction of traversing the arcs,
that is, ����� � ����� for every pair of nodes. In the asymmetric TSP (ATSP) at least for
one pair of nodes

 �!�
we have �����#"� ����� . All the TSP instances used in the empirical

studies presented in this article are taken from the TSPLIB benchmark library ac-
cessible at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft
/TSPLIB95/TSPLIB.html. These instances have been used in many other
studies and partly stem from practical applications of the TSP.

2.2.2 The Quadratic Assignment Problem
The QAP is the problem of assigning a set of facilities to a set of locations with

given distances between the locations and given flows between the facilities. The
goal is to place the facilities on locations in such a way that the sum of the products
between flows and distances is minimal. Given � facilities and � locations, two
�%$&� matrices

	'�)(�* ���,+ and - �)(�.,/10 + , where
* ��� is the distance between locations

�
For example, the algorithmic scheme of Figure 1 does not capture the application of

ACO algorithms to network routing problems (for an example see [7]).

4

and

�
and

.,/10
is the flow between facilities � and � , the QAP is the problem to

minimize

� ��� � � ��
��� �

��
�	� �

. ��� *�
� ���
� �	� (1)

where
�

is an arbitrary permutation of the set of integers ��� ������� � ��� (corresponding
to an assignment of facilities to locations), and

� ��!�
gives the location of facility

in

�
. Intuitively,

. ��� *
� ���
� ��� represents the cost contribution of simultaneously as-
signing facility

to location

� ��!�
and facility

�
to location

� � ���
.

The QAP is an � � -hard optimization problem [41] and it is considered one of
the hardest optimization problems. To date, instances of size ������� can generally
not be solved to optimality and one has to apply heuristic algorithms which find
very high quality solutions in a reltively short computation time. The instances
on which we will test

���
AS are taken from the QAPLIB benchmark library

(accessible at http://serv1.imm.dtu.dk/˜sk/qaplib/).

2.3 Applying Ant System to the TSP

When applying Ant System (AS) to the TSP, arcs are used as solution compo-
nents. A pheromone trail � ��� � ��� , where

�
is the iteration counter, is associated with

each arc
� �����

; these pheromone trails are modified during the run of the algo-
rithm through pheromone trail evaporation and pheromone trail reinforcement by
the ants. When applied to symmetric TSP instances, pheromone trails are also sym-
metric (� ��� �!��� � �
�1� � ���) while in applications to asymmetric TSPs (ATSPs) possibly
� ��� �!��� "� �
�1� �!��� .
2.3.1 Tour Construction

Initially, " ants are placed on " randomly chosen cities. Then, in each construc-
tion step, each ant moves, based on a probabilistic decision, to a city it has not yet
visited. This probabilistic choice is biased by the pheromone trail � ��� � ��� and by a
locally available heuristic information # ��� . The latter is a function of the arc length;
AS and all other ACO algorithms for the TSP use #���� � �%$ � ��� . Ants prefer cities
which are close and connected by arcs with a high pheromone trail and in AS an
ant & currently located at city

chooses to go to city

�
with a probability:

')(��� � ��� � (� ��� �!��� ++*-, (# ���
+/.021�3	4657 (� � 1 � ��� + * , (# � 1 + . if
� � � (� (2)

where 8 and 9 are two parameters which determine the relative importance of the
pheromone trail and the heuristic information, and � (� is the feasible neighborhood
of ant & , that is, the set of cities which ant & has not visited yet. Each ant & stores the
cities visited in its current partial tour in a list, that is, each ant has a limited memory
which is used to determine � (� in each construction step and thus to guarantee
that only valid Hamiltonian cycles are generated. Additionally, it allows the ant to

5

retrace its tour, once it is completed, so that it can deposit pheromone on the arcs it
contains.

2.3.2 Pheromone Update.
After all ants have completed the tour construction, the pheromone trails are

updated. This is done first by lowering the pheromone trails by a constant factor
(evaporation) and then by allowing the ants to deposit pheromone on the arcs they
have visited. In particular, the update follows this rule:

� ��� �!� � � � � � ,�� ��� � ��� � ��
(� �

� � (��� � ��� (3)

where the parameter � (with ��� ��� �) is the trail persistence (thus, ��� � models
the evaporation) and

� � (��� � ��� is the amount of pheromone ant & puts on the arcs it
has used in its tour. The evaporation mechanism helps to avoid unlimited accumu-
lation of the pheromone trails. While an arc is not chosen by the ants, its associated
pheromone trail decreases exponentially; this enables the algorithm to “forget” bad
choices over time. In AS,

� � (��� � ��� is defined as follows:

� � (��� � ��� �
	
�
� �%$� (�!��� if arc

� �����
is used by ant & in iteration

�

� otherwise
(4)

where (� ��� is the tour length of the & th ant. By Equation 4, the better the ant’s tour
is, the more pheromone is received by the arcs belonging to this tour. In general,
arcs which are used by many ants and which are contained in shorter tours will
receive more pheromone and therefore will more likely be chosen in future itera-
tions of the algorithm. In this sense the amount of pheromone ����� �!��� represents the
learned desirability of choosing the city

�
to move to when an ant is in city

.

2.4 Applying Ant System to the QAP

The AS application to the TSP can be extended to the QAP in a straightforward
way. The main difference is in the definition of the solution components which
for the QAP are given by the assignments of facilities to locations. Hence, the
pheromone trails � ��� � ��� in the QAP application correspond to the desirability of
assigning a facility

to a location

�
.

For the solution construction, it can be convenient to use a preordering of the fa-
cilities (or, equivalently, the locations) and assign facilities in the given order. The
decision points are related to the assignments: at each decision point an ant prob-
abilistically decides on which location the next facility should be put. In AS for
the QAP, these decisions are done according to Equation 2 using a QAP-specific
heuristic information [30]. In this case the feasible neighborhood � (� of ant & com-
prises those locations which are still free. The single construction steps are repeated
until a complete assignment is obtained. The pheromone update is done as in the
TSP application.

6

2.5 Improvements over Ant System

AS has been compared with other general purpose heuristics on some relatively
small TSP instances with up to 75 cities. Some initial results were encouraging
and have shown the viability of the approach; for example, AS could be shown
to achieve better tour qualities than other nature-inspired algorithms, such as Sim-
ulated Annealing or Genetic Algorithms [14]. However, for larger TSP instances
AS gives a very poor solution quality compared to state-of-the-art algorithms. A
first improvement over AS, called the elitist strategy for Ant System (ASe) [8,14],
gives a strong additional reinforcement to the solution components belonging to
the best solution found since the start of the algorithm; this solution is denoted as
� ��� (global-best solution) in the following. This is realized by adding a quantity
� $ � � � ��� � , where � is the number of elitist ants and

� � � ��� � is the solution cost of � ��� ,
to the arcs used in � ��� after each iteration. Some limited results presented in [8,14]
suggest that the use of the elitist strategy with an appropriate number of elitist ants
allows AS to find better tours and to find them earlier in the run. Yet, if too many
elitist ants are used, the search concentrates early around suboptimal solutions lead-
ing to a premature stagnation of the search. Search stagnation is defined in [14] as
the situation where all ants follow the same path and construct the same solution
over and over again, such that better solutions cannot be found anymore.

Other improvements over AS include Ant Colony System (ACS) [18,12] and
the rank-based version of Ant System (ASrank) [5]. In ACS and

���
AS, the best

solutions found during the search are exploited by allowing only one ant to update
the trails after each iteration, while in ASrank a fixed number of ants of the current
iteration – the better the ants are ranked in the current iteration, the more weight
they are given for the trail update – and the global-best ant are allowed to update
the pheromone trails.

3 Search space characteristics

All improved ACO algorithms have one important feature in common: they ex-
ploit the best solutions found during the search much more than what is done by
Ant System. Also, they use local search to improve the solutions constructed by
the ants. The fact that additional exploitation of the best found solutions provides
the key for an improved performance, is certainly related to the shape of the search
space of many combinatorial optimization problems. In this section, we report some
results on the topology of search spaces of TSP and QAP instances which partly
explain the observed performance differences and motivates important aspects of
the algorithmic design of

���
AS.

3.1 Analysis of Fitness Landscapes

Central to the search space analysis of combinatorial optimization problems is
the notion of fitness landscape [42,53]. Intuitively, the fitness landscape can be

7

imagined as a mountainous region with hills, craters, and valleys. A local search
algorithm can be pictured as a wanderer that performs a biased walk in this land-
scape. In a minimization problem such as the TSP or the QAP, the goal is to find
the lowest point in this landscape. The effectiveness of a given search strategy for
the wanderer strongly depends on the ruggedness of the landscape, the distribution
of the valleys and craters in the landscape, and the overall number of valleys and
craters. Formally, the fitness landscape is defined by

(1) the set of all possible solutions
�

;
(2) an objective function that assigns a fitness value

� � � � to every � ���
;

(3) a neighborhood structure � � � $ �
.

The fitness landscape determines the shape of the search space as encountered by
a local search algorithm. The neighborhood structure induces a distance metric on
the set of solutions; the distance � � � � ��� � between two solutions � and ��� can be
defined as the minimum number of moves that have to be performed to transform �
into � � .

The distribution of local minima and their relative location with respect to global
optima is an important criterion for the effectiveness of adaptive multi-start algo-
rithms like ACO algorithms. For analyzing this aspect of the fitness landscape, the
correlation between solution fitness and the distance to optimal solutions has been
studied [3,24,34]; in the literature on genetic algorithms this correlation is also
called the fitness-distance correlation (FDC) [24]. This correlation can be captured
by the correlation coefficient, which is defined as:

� ��� ��� � � Cov
�	� ��� �

Var

��� � ,
 Var
��� � (5)

where Cov
�	� ��� �

is the covariance between the random variables
�

and
�

which
probabilistically describe the fitness and the distance of local optima to a global
optimum, while Var denotes the variance. This correlation coefficient can be em-
pirically estimated by substituting the covariance and the variance values by the
respective empirically measured ones. The FDC analysis has shown to be very use-
ful in the context of studying the effectiveness of adaptive algorithms and their
design [3,4,34]. Note that for minimization problems, a high, positive correlation
between the solution cost and the distance to the global optimum indicates that the
smaller the solution cost, the closer are the solutions – on average – to a global
optimum. Hence, if a problem shows a high FDC, algorithms combining adaptive
solution generation and local search, may be expected to perform well. For ACO
algorithms, this is the case because the most important guidance mechanism of
ACO algorithms is the solution quality of the solutions constructed by the ants —
the better a solution, the more its solution components will be reinforced. Yet, if
no such correlation exists or, even worse, if cost and distance are negatively cor-
related, the fitness gives only little or no guidance towards better solutions and on
such problems ACO algorithm may perform poorly.

8

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

140 160 180 200 220 240 260

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest global optimum

"rat783"

0

2

4

6

8

10

12

14

16

18

180 200 220 240 260 280 300 320 340 360

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest global optimum

fl1577

Fig. 2. Fitness-distance plots for symmetric TSP instances. Each of the plots is based on
2500 local optima. The plots are for the instances rat783 (left) and fl1577 (right). The� -axis gives the distance to the closest global optimum, the � -axis represents the percentage
deviation from the minimal tour length.

3.2 FDC Analysis for the TSP

The symmetric TSP is one of the most widely studied problems in terms of search
space analysis [25,37,3,4]. A good distance measure between two tours � and � � is
given by the number of different arcs, that is, � � � � � � � � � � � � �� �!� ��� ����������
��� � �����%� � � � � (where � is the number of cities). A first study of the correla-
tion between the solution quality and the distance to the global optimum has been
done in [3]. Additionally, plots of the solution cost versus the distance to the closest
global optimum have shown to be a very illustrative tool for the graphical presen-
tation of the cost-distance relationship [3,24,34]. Here, we exemplify results on the
FDC analysis using some instances which are larger than previously studied ones.

For our investigation we use a 3-opt local search algorithm [27]. This local
search algorithm proceeds by systematically testing whether the current tour can
be improved by replacing at most three arcs. Straightforward 3-opt implementa-
tions require � � � � �

exchanges to be examined. Since this is too time-consuming in
practice, we use a number of standard speed-up techniques [1,32,23] which achieve
a sub-quadratical growth of the local search time with instance size. In particular,
we restrict the set of examined moves to a candidate list of a fixed number of near-
est neighbors; here, as a default we set this number to 40. Additionally, we apply a
fixed radius nearest neighbor search [1,23].

For some instances several globally optimal solution exist. To partially address
this issue, for each of these problems we generated a number of globally optimal
solutions, then eliminated doubles and in our FDC analysis we use the distance
to the closest of these global optima. (Note that the number in the instance name
gives the number of cities.) Figure 2 gives plots of the percentage deviation from the
optimum versus the distance to the closest global optimum. All plots show a strong
positive correlation between solution cost and the distance from the closest optimal
solution — better local minima tend to be closer to the global optimum. Some
summary results for the FDC analysis are given in Table 1, in particular, the average

9

Table 1
Results of the FDC analysis on symmetric TSP instances based on 2500 3-opt local
optima. We report the instance name, the average percentage deviation from the optimum
(Average (%)), the number of optimal solutions which are used in the FDC analysis (

�������
),

the average distance between local optima (�	�	
��� 1 0
), the ratio between ����
��� 1 0

and the
instance size � , the average distance to the closest global optimum (����
��� �����), the ratio
����
��� ������� � and the fitness-distance correlation coefficient (� 1 0

).
instance Average (%) ������� ��� ���! �"$# �!� ���� %"$#�& � �!� ���� ����� �!� ���� ����� & � ' "$#
lin318.tsp 3.56 1 75.83 0.228 67.25 0.211 0.469

rat783.tsp 4.85 119 249.32 0.318 204.24 0.261 0.624

pcb1173.tsp 5.91 7 328.93 0.280 274.34 0.234 0.585

d1291.tsp 6.96 27 206.27 0.160 159.19 0.123 0.631

fl1577.tsp 8.16 27 330.75 0.210 267.25 0.169 0.450

pr2392.tsp 5.71 12 660.91 0.276 552.49 0.231 0.538

distance between local minima and to the average distance to global optima, the
respective ratios to the maximum possible distance, and the correlation coefficients
are given. Interestingly, the ratio between the average distance of tours and the
instance size (column

)() �� 1 0 $ � in Table 1) is very small; this fact indicates that
locally optimal tours in the TSP are concentrated around a small region of the whole
search space (this particularity has also been observed before [25,37,3,4]). Also, the
correlation coefficients are all statistically significant. Note that the generality of
these results does not depend on the particular 3-opt algorithm used. When using
2-opt or the more powerful Lin-Kernighan heuristic (LK) for the local search,
again a strongly significant FDC, which was slightly weaker when using 2-opt
and stronger when using LK, has been observed for the instances examined in [3].

3.3 FDC Analysis for the QAP

For the QAP it is known that there are several different types of instances and
that the particular instance type has a considerable influence on the performance of
heuristic methods [50]. According to [50], the instances of QAPLIB which we use
in this article can be classified into the following four classes.����

Unstructured, randomly generated instances. Instances with the distance and
flow matrix entries generated randomly according to a uniform distribution. These
instances are among the hardest to solve exactly. Nevertheless, most iterative
search methods find solutions within � � �,+ from the best known solutions rel-
atively fast [50].� !�
Grid-based distance matrix. In this class of instances the distance matrix stems
from a � � $ � � grid and the distances are defined as the Manhattan distance
between grid points. These instances have multiple global optima (at least 4 if
� � "� � � and at least 8 if � � � � �) due to the definition of the distance matrices.�� !�
Real-life instances. Instances from this class are instances from practical appli-
cations of the QAP. Real-life instances have in common that the flow matrices
have many zero entries and the remaining entries are clearly not uniformly dis-
tributed.

10

Table 2
Results of the FDC analysis for QAP instances from the 4 classes defined in this section.
Given are the instance identifier (the number in the instance name is the number of facili-
ties), the flow dominance fd

�����
, the distance dominance dd

�����
and the sparsity (sp). The

remaining entries give summary results of the FDC analysis of the QAP search space. In
particular, Average (%) is the average percentage deviation from the best known solution,� �����

is the number of optimal solutions used in the FDC analysis, �	�	
	�� ����� is the average
distance to the closest optimum, ����
��� � � ��� � is the ratio between this average instance and
the instance dimension, and � 1 0 is the correlation coefficient.

instance � � �	� � � � ��
 � 0 �
Average (%) ������� �!� ���� ����� �!� ���� ����� & � ' "$#

unstructured, randomly generated (i)

tai60a 61.41 60.86 0.011 4.71 1 58.82 0.980 0.025

tai80a 59.22 60.38 0.009 3.76 1 78.90 0.986 0.022

Instances with grid-distances (ii)

nug30 52.75 112.48 0.316 4.18 4 25.93 0.864 0.262

sko56 51.46 110.53 0.305 2.96 4 51.62 0.922 0.254

sko64 51.18 108.38 0.308 2.70 8 58.88 0.92 0.303

real-life instances (iii)

bur26a 15.09 274.95 0.223 0.32 96 21.12 0.812 0.027

bur26c 15.09 228.40 0.257 0.42 96 22.31 0.858 0.569

els19 52.10 531.02 0.637 36.61 1 16.85 0.887 0.550

kra30a 49.22 149.98 0.6 7.76 257 25.23 0.841 0.251

ste36a 55.65 400.30 0.707 12.01 8 30.98 0.861 0.295

real-life like instances (iv)

tai60b 76.83 317.82 0.548 7.92 1 56.88 0.948 0.366

tai80b 64.05 323.17 0.552 6.15 1 77.47 0.968 0.150

tai100b 80.42 321.34 0.552 5.34 1 95.23 0.952 0.546

���(�
Real-life-like instances. Since the real-life instances in QAPLIB are of a rather
small size, a particular type of randomly generated problems has been proposed
in [50]. These instances are generated in such a way that the matrix entries re-
semble the distributions found for real-life problems.

To differentiate between the classes of QAP instances, the flow dominance statistic
fd can be used. It is defined as:

fd
��	�� � �� �6,�� �

where

� � �
� �

, ��
��� �

��
��� �

* ��� and �
� ���� �

� � � � , ��
��� �

��
�	� �

� * ��� � � �

A high flow dominance indicates that a large part of the overall flow is exchanged
among relatively few items. Randomly generated problems from class (i) have a
rather low flow dominance, whereas real-life problems, in general, have a rather
high flow dominance. To capture the structure of the distance matrix, a distance
dominance (dd) can be defined analogously. Additionally, real life problems of-
ten have sparse flow matrices, hence the sparsity of the flow matrix, defined as

11

� ' � � � $ � � , where � � is the number of zero matrix entries, can give additional
information on the instance type.

Our FDC analysis of the QAP search space uses a 2-opt algorithm which ex-
amines all possible exchanges of pairs of facilities. The distance between solutions�

and
� � is measured as the number of items placed on different locations, that is,

� ��� � � � � � � � ��� ��"��� �� � � . We measure the distance to the optimal solutions if they
are available, otherwise we use the best known solutions. Note that for instances of
class

�� !�
,
� ��

, and
� (�

with up to 80 items the currently best known solutions are
conjectured to be optimal.

For the FDC analysis of the QAP search space one has to take into considera-
tion the fact that many instances have multiple optimal solutions which may, due
to symmetries in the distance matrix like in instances of class

� ��
, be at maximal

possible distance � . Hence, on such instances one has to measure the distance to
the closest global optimum to get meaningful results. As the exact number of global
optima for the QAP instances is not known, we determined a (possibly large) num-
ber of optimal (or best known) solutions. The fitness-distance analysis for the QAP
is based on 5000 2-opt local optima (identical solutions have been eliminated).
Some summary results are given in Table 2, where additionally the flow dominance,
the distance dominance, and the sparsity of each instance are indicated. Figure 3
shows scatter plots of the fitness-distance correlation for one instance of each prob-
lem class.

The fitness-distance analysis shows clear differences between the different prob-
lem classes. For class

����
, the correlation coefficients are almost zero for all in-

stances. Hence, the solution quality gives only very little guidance and on these
instances ACO algorithms can be expected to perform rather poorly. For the other
three classes, significant correlations between the solution cost and the distance to
an optimal solution exist. The only exception is instance bur26a for which the
correlation coefficient is not significantly different from zero at the 0.01 level. Note
that for instances with a high flow or distance dominance and high sparsity, also a
significant FDC can be observed which suggests that these simpler measures may
be used as indicators for a high FDC.

In summary, we can conclude that — on average — the better the solution quality
the closer a solution is to an optimal solution in real-life QAP instances and also
in those of classes

�� ��
and

���(�
. These instances show a structure in the following

sense: The optimal solutions determine the preferred locations of items. Hence, the
more locations for items a solution has in common with an optimal solution, the
better will be that solution, on average. As we have argued before, such a significant
correlation also indicates the potential usefulness of an ACO approach to the QAP.

Comparing the results of the FDC analysis for the TSP and the QAP one may
observe two main differences. First, the ratio between the average distance of the
local minima from the closest optimal solution and the instance dimension, for both
problems given by � , is much smaller for the TSP than for the QAP. Second, the
correlation coefficients for the TSP instances are somewhat larger than for the QAP.
Based on these observations we can conclude that local minima in the QAP appear
to be spread over large parts of the QAP search space, while for the TSP they are

12

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 52 54 56 58 60

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest optimum

"tai60a"

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

40 45 50 55 60

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest optimum

"sko64"

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest optimum

"kra30a"

0

2

4

6

8

10

12

14

16

18

20

35 40 45 50 55 60

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

distance to closest optimum

"tai60b"

Fig. 3. Fitness-distance plots for four QAP instances, one from each instance class. From
top left to bottom right: tai60a (class

� � �
), sko64 (class

� ��� �
), kra30a (class

� ����� �
), and

tai60b (class
� � � �). The number in the instance name is the number of facilities. The

plots show 5000 2-opt solutions for each instance; the � -axes gives the distance to the
closest global optimum, while the � -axes indicates the absolute solution cost.

concentrated on a relatively small subspace; also, the solution quality of QAP local
minima tends to give somewhat less guidance than for the TSP. Hence, the QAP
should be relatively more difficult to solve than the TSP, which is in accordance
with the observed hardness of these problems in practice. Additionally, the fact that
local minima in the QAP search space are more scattered suggests that in the QAP
case effective algorithms need to do a stronger search space exploration than in the
TSP case.

4
�����

–
��� � Ant System

Research on ACO has shown that improved performance may be obtained by a
stronger exploitation of the best solutions found during the search and the search
space analysis in the previous section gives an explanation of this fact. Yet, using
a greedier search potentially aggravates the problem of premature stagnation of the
search. Therefore, the key to achieve best performance of ACO algorithms is to
combine an improved exploitation of the best solutions found during the search
with an effective mechanism for avoiding early search stagnation.

�����
–
��� �

Ant System, which has been specifically developed to meet these requirements,
differs in three key aspects from AS.

13

����
To exploit the best solutions found during an iteration or during the run of the
algorithm, after each iteration only one single ant adds pheromone. This ant may
be the one which found the best solution in the current iteration (iteration-best
ant) or the one which found the best solution from the beginning of the trial
(global-best ant).� !�
To avoid stagnation of the search the range of possible pheromone trails on each
solution component is limited to an interval

(� min
� � max + .�� !�

Additionally, we deliberately initialize the pheromone trails to � max, achieving in
this way a higher exploration of solutions at the start of the algorithm.
In the next sections we discuss the differences between

���
AS and AS in more

detail and report computational results which demonstrate the effectiveness of the
introduced modifications in improving the performance of the algorithm.

4.1 Pheromone trail updating

In
���

AS only one single ant is used to update the pheromone trails after each
iteration. Consequently, the modified pheromone trail update rule is given by

� ��� �!� � � � � � ,�� ��� � ��� � � � best��� �
(6)

where
� � best��� � �%$ � � � best � and

� � � best � denotes the solution cost of either the
iteration-best (� � �) or the global-best solution (� ���). Using one single ant for the
pheromone trail update was also proposed in ACS [12]. While in ACS typically
only � ��� is used (although some limited experiments have also been performed us-
ing � � �), ��� AS focuses on the use of the iteration-best solutions.

The use of only one solution, either � � � or � ��� , for the pheromone update is the
most important means of search exploitation in

���
AS. By this choice, solution

elements which frequently occur in the best found solutions get a large reinforce-
ment. Still, a judicious choice between the iteration-best and global-best ant for up-
dating the pheromone trails controls the way the history of the search is exploited.
When using only � ��� , the search may concentrate too fast around this solution and
the exploration of possibly better ones is limited, with the consequent danger of
getting trapped in poor quality solutions. This danger is reduced when � � � is chosen
for the pheromone trail update since the iteration-best solutions may differ consid-
erably from iteration to iteration and a larger number of solution components may
receive occasional reinforcement. Of course, one can also use mixed strategies like
choosing � � � as a default for updating the pheromones and using � ��� only every
fixed number of iterations. In fact, as we will show later, when using

���
AS with

local search for solving some of the larger TSP or QAP benchmark instances, the
best strategy seems to be the use of a dynamical mixed strategy which increases the
frequency of using � ��� for the pheromone update during the search (see Section 5
for details).

14

4.2 Pheromone trail limits

Independent of the choice between the iteration-best and the global-best ant for
the pheromone trail update, search stagnation may occur. This can happen if at each
choice point, the pheromone trail is significantly higher for one choice than for all
the others. In the TSP case, this means that for each city, one of the exiting arcs
has a much higher pheromone level than the others. In this situation, due to the
probabilistic choice governed by Equation 2, an ant will prefer this solution com-
ponent over all alternatives and further reinforcement will be given to the solution
component in the pheromone trail update. In such a situation the ants construct the
same solution over and over again and the exploration of the search space stops.

Obviously, such a stagnation situation should be avoided. One way for achiev-
ing this is to influence the probabilities for choosing the next solution component,
which depend directly on the pheromone trails and the heuristic information. The
heuristic information is typically problem-dependent and static throughout the al-
gorithm run. But by limiting the influence of the pheromone trails one can easily
avoid the relative differences between the pheromone trails from becoming too ex-
treme during the run of the algorithm. To achieve this goal,

���
AS imposes ex-

plicit limits � min and � max on the minimum and maximum pheromone trails such that
for all pheromone trails � ��� � ��� , � min � � ��� � ��� � � max. After each iteration one has to
ensure that the pheromone trail respects the limits. If we have ����� � ��� � � max, we set
� ��� �!��� � � max; analogously, if � ��� � ��� � � min, we set � ��� �!��� � � min. Also note that by
enforcing � min

� � and if # ��� ��� for all solution components, the probability of
choosing a specific solution component is never 0.

Still, appropriate values for the pheromone trail limits have to be chosen. In the
following we will propose a principled way of determining these values. Yet, first
we introduce the notion of convergence for

�����
–
��� � Ant System which is

needed in the following. We say that
���

AS has converged if for each choice
point, one of the solution components has � max as associated pheromone trail, while
all alternative solution components have a pheromone trail � min. If

���
AS has

converged, the solution constructed by always choosing the solution component
with maximum pheromone trail will typically correspond to the best solution found
by the algorithm. The concept of convergence of

���
AS differs in one slight

but important aspect from the concept of stagnation [14]. While stagnation de-
scribes the situation where all ants follow the same path, in convergence situations
of
���

AS this is not the case due to the use of the pheromone trail limits.
We now refine our concept of convergence by showing that the maximum possi-

ble pheromone trail is asymptotically bounded.
Proposition 4.1 For any � ��� it holds:

��������
	 � ��� � ��� � � ��� � � �max

� �
� � � , �� � � ����� � (7)

Proof: The maximum possible amount of pheromone added after any iteration
is �%$ � � � ����� � , where

� � � � � � � is the optimal solution value for a specific problem.

15

Hence, by Equation 6 the discounted pheromone trail up to iteration
�

corre-
sponds to

� max��� �!��� � ��
��� �

�
� � , �� � � ����� �

� �
� ,�� ��� � � �

Asymptotically, because � � � , this sum converges to

�
� � � , �� � � ����� �

In
���

AS, we set the maximum pheromone trail � max to an estimate of the
asymptotically maximum value. This is achieved by using

� � � ��� � instead of
� � � ����� �

in Equation 7; each time a new best solution is found, � max is updated, leading
actually to a dynamically changing value of � max

�!���
.

To determine reasonable values for � min, we use the following assumptions (the
first is based on empirical observations in some initial experiments for the TSP):����

The best solutions are found shortly before search stagnation occurs. In such a
situation the probability of re-constructing the global-best solution in one algo-
rithm iteration is significantly higher than zero. Better solutions may be found
close to the best solution found.� !�
The main influence on the solution construction is determined by the relative
difference between upper and lower pheromone trail limits, rather than by the
relative differences of the heuristic information.

Note that the validity of the first assumption depends strongly on the search space
characteristics of the problem as discussed in the previous section. It implicitely
means that around good solutions there is a reasonable chance to find even better
ones. In fact, for the TSP this is true (see also Section 3.2). The second assumption
is taken because in the following derivation of a systematic way of setting � min we
will neglect the influence of the heuristic information on the probabilities given
by Equation 2. This is possible if the influence of the heuristic information is low,
which, as is typically done in

���
AS, is the case if the parameter 9 is chosen

rather low or if no heuristic information is used at all.
Given these assumptions, good values for � min can be found by relating the con-

vergence of the algorithm to the minimum trail limit. When
���

AS has con-
verged, the best solution found is constructed with a probability '

best which is sig-
nificantly higher than 0.

�
In this situation, an ant constructs the best solution found

if it makes at each choice point the “right” decision and chooses a solution compo-
nent with maximum pheromone trail � max. In fact, the probability '

dec of choosing
the corresponding solution component at a choice point directly depends on � max

and � min. For the sake of simplicity, let us assume that '
dec is constant at all decision

points. Then, an ant has to make � times the “right” decision and, hence, it will

�
Intuitively, we require � best to be relatively large and later give numeric examples of

reasonable values for � best for the the ��� AS application to the TSP.

16

construct the best solution with a probability of ' �dec. By setting

' �dec

� '
best (8)

we can determine '
dec as

'
dec

� �� '
best

�
(9)

So, given a value for '
best, we can now determine appropriate settings for � min.

On average, at each choice point an ant has to choose among avg
� � $ � solution

components. Then, the probability '
dec of making the right decision according to

Equation 2 can be calculated as �

'
dec

� � max

� max
� �

avg � � � ,�� min
(10)

Solving this equation for � min yields

� min
� � max , � ��� '

dec
�

�
avg � � � , ' dec

� � max , � ��� �� '
best

�
�
avg � � � , �� '

best
(11)

Note that if '
best

� � , then � min
� � . If '

best is too small, it may happen that by
Equation 11 � min

� � max. In this case we set � min
� � max which corresponds to using

only the heuristic information in the solution construction. Based on Equation 11,
we can determine � min, given a value for '

best. Choosing values for '
best is directly

related to the amount of exploration done by
�����

–
��� � Ant System when it

has converged. Thus, '
best provides a good way of investigating the effect of the

lower trail limits on the performance of
�����

–
��� � Ant System.

In Section 4.4.2 we will investigate the proposed settings of � min and we experi-
mentally show the usefulness of the lower trail limits.

4.3 Pheromone trail initialization

In
���

AS we initialize the pheromone trails in such a way that after the first
iteration all pheromone trails correspond to � max

� � � . This can easily be achieved
by setting � � � � to some arbitrarily high value. After the first iteration of

���
AS,

the trails will be forced to take values within the imposed bounds, in particular,
they will be set to � max

� � � . This type of trail initialization is chosen to increase
the exploration of solutions during the first iterations of the algorithm. To illus-
trate this fact, consider the following example: Due to the trail evaporation (de-
termined by parameter �), after the first iteration the relative difference between
the pheromone trails on solution components will differ by a ratio of at most � ,
after the second by � � , etc. If, on the contrary, the pheromone trails would be ini-
tialized to their lower limits � min, the relative differences between the pheromone

� Equation 10 is obtained from Equation 2 by requiring that the solution component with
pheromone trail � max is chosen and we have avg ��� other solution components with associ-
ated pheromone trail � min.

17

trails would increase much more strongly; in particular, in this latter case, the ra-
tio between � min and the amount of pheromone deposited on a solution element is� � � � � , ��*)(* , ' � ��� � $ � � � ' � ���). With the empirically chosen parameter settings,
this ratio is significantly higher than the relative difference among the pheromone
trail when initializing the pheromone trails to � max. For example, with the parame-
ter settings chosen for the experimental investigation in the next section, in the first
case this factor would amount to 6.44, while when initializing the pheromone trails
to � max it corresponds to 1.02. Thus, the selection probabilities of Equation 2 evolve
more slowly when initializing the pheromone trails to � max and, hence, the explo-
ration of solutions is favored. The experimental results presented in Section 4.4.3
confirm the conjecture that the larger exploration of the search space due to setting
� � � � � � max improves

���
AS’ performance.

4.4 Experiments with
�����

–
��� � Ant System

In this section we experimentally study the effectiveness of the three main mod-
ifications of

���
AS compared to AS and the influence of specific parameter set-

tings on
���

AS performance. The experimental study uses the TSP as example
application and here we use

���
AS without local search; for a detailed overview

of the results obtained with
���

AS with local search for the TSP we refer to
Section 5. All the experiments were performed with a ceteris paribus assumption,
that is, in each experiment only one single factor is varied and, hence, performance
differences can only be attributed to the variation of this single factor.

Unless explicitly indicated otherwise, the following default parameter settings
are used. We choose 9 � � � 8 � � � " � � (where " is the number of ants)
and � � � �����

, an evaporation rate which results in a rather slow convergence for
���

AS. The pheromone update is done using only the iteration-best ant. The phe-
romone trail limits were chosen as proposed in Section 4.2 with '

best
� � � ��� . The

ants start their solution construction from a randomly chosen city and they use can-
didate lists of length 20 which contain the nearest neighbors ordered according to
nondecreasing distances [1,28,40]. When constructing a tour, an ant chooses prob-
abilistically according to Equation 2 the next city among those in the candidate list,
if possible. Only if all the members of the candidate list of a city have already been
visited, one of the remaining cities is chosen. In this latter case we deterministically
choose the city for which

(� ��� �!��� + * , (# ���,+ . is maximum.
The TSP benchmark instances are all taken from TSPLIB; for all instances the

optimal solution value is known. We will refer to the benchmark instances by the
identifier used in TSPLIB which indicates the number of cities (instance eil51
has 51 cities, etc.).

4.4.1 Parameter values for �

To examine the influence of different values of the pheromone trail evaporation
rate � , which determines the convergence speed of

���
AS towards good solu-

tions, we present curves for the tradeoff between the average solution quality versus
the number of tour constructions for the two TSP instances kroA100 and d198

18

0

0.5

1

1.5

2

2.5

3

10000 100000

pe
rc

en
ta

ge
 d

ev
ia

tio
n

No. tour constructions

"rho=0.98"
"rho=0.95"
"rho=0.90"
"rho=0.80"
"rho=0.70"

0

2

4

6

8

10

12

14

10000 100000

pe
rc

en
ta

ge
 d

ev
ia

tio
n

No. tour constructions

"rho=0.98"
"rho=0.95"
"rho=0.90"
"rho=0.80"
"rho=0.70"

Fig. 4. Influence of the parameter � on the tradeoff between the number of tour con-
structions (given on � -axis) and the solution quality (given on � -axis) on TSP instances
kroA100 (left) and d198 (right). Note the log-scale on the x-axis; the upper and leftmost
parts of the curves were cut off to focus on the important details.

using different settings of � averaged over 25 and 10 independent executions of the
algorithms, respectively. The maximum number of tour constructions is ��� � � ,��
and � is varied between 0.7 and 0.99.

In Figure 4, it can be observed that for a low number of tour constructions, better
tours are found when using lower values of � . This is due to the fact that for lower

� the pheromone trails on arcs which are not reinforced decrease faster and, hence,
the search concentrates earlier around the best tours seen so far. If � is high, too few
iterations are performed to reach marked differences between the pheromone trails
on arcs contained in high quality tours and those which are not part of the best tours.
For a larger number of tour constructions, however, using higher � values pays off,
because the algorithm is able to explore longer the search space. Additionally, it
is interesting to note that with more tour constructions the average performance
increases generally for all values of � . This is mainly due to the effect of the lower
trail limits (see also next section).

4.4.2 Lower pheromone trail limits
To investigate the effectiveness of the lower trail limits, we compare experimen-

tal results obtained by systematically varying '
best (as proposed in Section 4.2) and

without using lower pheromone trail limits (� min
� �). As before, we allow a max-

imum ��� � � , � tour constructions, which is sufficient to achieve convergence of
���

AS on every instance.
The average solution qualities obtained on four symmetric TSP instances are

given in Table 3. For all instances the average solution quality is always better if
lower trail limits are used.

���
AS’s performance seems to be quite robust with

respect to the particular value chosen for the pheromone trail limits (via '
best). Even

when no lower trail limits are used, the results are quite good (compared, for ex-
ample, with the results given for longer runs in Section 4.6 for other AS variants).
Hence, facilitating a slow convergence by setting � to some large value and intro-
ducing elitism seems to be effective in practice. Yet, it should be noted that the rela-
tive difference between the average solution quality obtained with or without lower

19

Table 3
Computational results for systematically varying � best and without lower pheromone trail
limits (� min

���). Given are the average tour length, averaged over 25 runs, and in paren-
thesis the percentage deviation from the optimal tour length. Note that the smaller � best the
tighter are the trail limits. The best results are indicated in bold-face.

instance
�

best � ��� � � �

�
�

best � ��� � �

�
�

best � ��� �
�

�
best � ���

� � min � �

eil51 428.5 (0.59%) 428.0 (0.46%) 427.8 (0.43%) 427.7 (0.39%) 427.8 (0.43%)

kroA100 21344.8 (0.29%) 21352.8 (0.33%) 21336.9 (0.26%) 21353.9 (0.34%) 21373.2 (0.43%)

d198 16024.9 (1.55%) 15973.2 (1.22%) 15952.3 (1.09%) 16002.3 (1.41%) 16047.6 (1.70%)

lin318 42363.4 (0.80%) 42295.7 (0.64%) 42346.6 (0.75%) 42423.0 (0.94%) 42631.8 (1.43%)

pheromone trail limits appears to increase with increasing instance size. Hence, the
use of the lower trail limits in

���
AS is definitely advantageous.

4.4.3 Pheromone trail initialization
In
���

AS the trails are initialized to their upper trail limit. To show the useful-
ness of the proposed trail initialization we compare it to a trail initialization at the
lower pheromone trail limits; the computational results are given in Table 4. We find
that with the proposed trail initialization for all instances, except the smallest one,
a better solution quality can be obtained; again the differences appear to increase
with increasing instance size. Hence, the higher exploration of the search space
achieved in this way seems to be important to achieve a better solution quality.

Table 4
Computational results for pheromone initialization to the upper trail limit (�

� � � � � max)
and to the lower trail limit (�

� � � � � min). Given are the average tour length, averaged
over 25 runs, and in parenthesis the percentage deviation from the optimal tour length. The
results for setting �

� � � � � max are reproduced from the previous section. The best results
are indicated in bold-face.

instance �
�

� � � � max �
�

� ��� � min

eil51 427.8 (0.43%) 427.7 (0.39%)

kroA100 21336.9 (0.26%) 21362.3 (0.37%)

d198 15952.3 (1.09%) 16051.8 (1.72%)

lin318 42346.6 (0.75%) 42737.6 (1.68%)

4.4.4 Global versus iteration-best update
As mentioned before, updating the pheromone trails with � � � may give advan-

tages over using � ��� . We compare these two choices by running the same experi-
ments as before, but always using � ��� for the pheromone trail update. Additionally,
we investigate the influence of the lower pheromone trail limits by running each of
the experiments with and without imposing lower pheromone trail limits.

The results are given in Table 5. The average performance when using the itera-
tion-best ants for pheromone update is significantly better than using only the
global-best ant. For example, a closer examination of the results (not reported here)
showed that the worst solution obtained with the standard settings for

���
AS was

better than the average solution quality when using � ��� with pheromone trail limits

20

for all instances. In general, using exclusively � ��� for the pheromone trail update
seems not to be a very good idea for

���
AS. Yet, the lower pheromone trail limits

help to significantly improve the performance when using � ��� . Nevertheless, mixed
strategies which sometimes use � ��� may be helpful for achieving better exploitation
of the search results. Experiments on larger instances have shown that using such
mixed strategies with a frequency of � ��� increasing over time may yield a faster
convergence of the algorithm and produce improved results.

Table 5
Computational results for comparison of global-best update (� ���) versus iteration-best up-
date (� � �) with and without using lower pheromone trail limits (indicated by either

�
limits

or � no-limits). Given are the average tour length, averaged over 25 runs, and in parenthe-
sis the percentage deviation from the optimal tour length. The best results are indicated in
bold-face.

instance
0 7����

limits
0�� ���

limits
0 7�� no-limits

0�� � no-limits

eil51 427.8 (0.43%) 429.2 (0.75%) 427.8 (0.43%) 434.1 (1.89%)

kroA100 21336.9 (0.26%) 21417.1 (0.64%) 21373.2 (0.43%) 21814.7 (2.50%)

d198 15952.3 (1.09%) 16136.1 (2.26%) 16047.6 (1.70%) 16473.7 (4.40%)

lin318 42346.6 (0.75%) 42901.0 (2.08%) 42631.8 (1.43%) 44558.5 (6.02%)

4.5 Smoothing of the pheromone trails

An additional mechanism, called pheromone trail smoothing (PTS), may be use-
ful to increase

���
AS performance and, more generally, of any elitist versions of

AS. When
���

AS has converged or is very close to convergence (as indicated by
the average branching factor [17]), this mechanism increases the pheromone trails
proportionally to their difference to the maximum pheromone trail limit:

�	���� �!��� � � ��� �!��� ��
 , � � max
� ��� ��� ��� � ����� with � �
 � � � (12)

where � ��� �!��� and � ���� � ��� are the pheromone trails before and after the smoothing.
The basic idea of PTS is to facilitate the exploration by increasing the probability of
selecting solution components with low pheromone trail. The proposed mechanism
has the advantage that for

 � � , the information gathered during the run of the
algorithm (which is reflected in the pheromone trails), is not completely lost but
merely weakened. For

 � � this mechanism corresponds to a reinitialization of
the pheromone trails, while for

 � � PTS is switched off.
PTS is especially interesting if long runs are allowed, because it helps achieving

a more efficient exploration of the search space. At the same time, PTS makes
���

AS less sensitive to the particular choice of the lower pheromone trail limit.

4.6 Comparison of ant algorithms

In this section we compare the performance of the proposed improvements over
AS based on longer runs for some symmetric and asymmetric TSP instances which
had been proposed for the First International Contest on Evolutionary Optimization

21

Table 6
Computational results for symmetric (upper part) and asymmetric TSP (lower part) in-
stances from TSPLIB, details on the parameter settings are given in the text. opt indicates
the known optimal solution value of each instance. All algorithms are using the same maxi-
mum number of tour constructions. Results for ACS are taken from [18]. For each instance
we report the average solution quality, best results are indicated in bold-face. “+pts” indi-
cates that pheromone trail smoothing was used. The best results are indicated in bold-face.

instance opt
���

AS+pts
���

AS ACS
���

rank

���
rank+pts

���
e

���
e+pts AS

eil51 426 427.1 427.6 428.1 434.5 428.8 428.3 427.4 437.3

kroA100 21282 21291.6 21320.3 21420.0 21746.0 21394.9 21522.8 21431.9 22471.4

d198 15780 15956.8 15972.5 16054.0 16199.1 16025.2 16205.0 16140.8 16702.1

ry48p 14422 14523.4 14553.2 14565.4 14511.4 14644.6 14685.2 14657.9 15296.4

ft70 38673 38922.7 39040.2 39099.0 39410.1 39199.2 39261.8 39161.0 39596.3

kro124p 36230 36573.6 36773.5 36857.0 36973.5 37218.0 37510.2 37417.7 38733.1

ftv170 2755 2817.7 2828.8 2826.5 2854.2 2915.6 2952.4 2908.1 3154.5

[2]. The comparison is done based on the same number of tour constructions for all
algorithms; this number is chosen as & ,1� , �� � ��� , where & � � for symmetric TSPs
and & � � for ATSPs and � is the number of cities of an instance.

We compare the performance of
���

AS to that obtained with AS, ASe, ASrank,
and ACS. The computational results obtained with ACS are taken directly from [12]
while the results for ASe, ASrank, and AS are obtained using our implementation of
these algorithms.

For
���

AS the parameters were set to their default values as described before,
except that in every 10th iteration � ��� is used to reinforce the pheromone trails.
Additionally, we run

���
AS with and without the PTS mechanism (PTS is indi-

cated by +pts); in the former case, we chose

 � � �

� . PTS has been added in an
ad-hoc manner without fine-tuning parameters. In AS we set 8 � � � � , 9 �

�
� � .

In ASe additionally � � � elitist ants give reinforcement to � ��� , which showed to
give best peroformance. For ASrank we used the parameter settings proposed in [6],
that is, 8 � � � 9 �

�
�

and � ���
. Additionally, we also run ASe and ASrank with

9 � � � � for ATSPs and 9 � � � � for symmetric TSPs using the PTS mechanism; in
this case we directly reinitialize the trails since no trail limits are used in these two
algorithms.

The computational results in Table 6 show that generally
���

AS achieves the
best performance. The only exception is ATSP instance ry48p, for which ASrank

has a better average peformance. Yet, differently from
���

AS and ACS, ASrank

never found the optimal solution for that instance. Also, except for one single in-
stance (d198) the overall best solution for each instance was always found by
���

AS. We also mention that on two larger symmetric TSP instances (att532
and rat783), the average solution quality produced by

���
AS was even better

than the best solution found by ACS [45]. Regarding the performance of AS it can
be clearly seen that AS performs very poorly compared to the other algorithms.

The advantage of
���

AS over ACS (overall the second best performing ACO
algorithm) with respect to solution quality is more notable on the symmetric in-
stances, while on the ATSP instances they perform similarly. Interestingly, the so-

22

lution quality obtained with ASe and ASrank without PTS is, in general, significantly
worse than that of

���
AS and ACS. If PTS together with a lower influence of the

heuristic function is used, both algorithms catch up (the only exception being ASrank

on the ATSP instances) and roughly reach the solution quality obtained by ACS on
the symmetric TSPs, but they are still worse on most ATSP instances. Thus, the PTS
mechanism seems to be effective for increasing the performance the algorithms. It
also helps to slightly improve the performance of

���
AS, yet, not as strongly as

for ASe and ASrank.
In [12] it was shown that ACS shows generally good performance and that

it is competitive with other nature-inspired algorithms applied to the TSP. Since
���

AS achieves better solution qualities than ACS on most instances, our com-
putational results demonstrate the competitive performance of

���
AS when com-

pared to other improvements on AS as well as other nature-inspired algorithms. Yet,
to obtain results competitive with the best performing algorithms for the TSP, local
search has to be used to improve solutions.

5 Experimental results for the TSP

In this section we present computational results of
���

AS when combined
with local search on some larger TSP instances from TSPLIB. For the symmetric
TSPs we use the 3-opt local search algorithm (see Section 3.2). In addition to the
techniques described there, we use don’t look bits associated with each node [1].
The use of don’t look bits leads to a further, significant speed-up of the local search
algorithm at only a small loss in solution quality.

For ATSPs, we use a restricted form of 3-opt, called reduced 3-opt. It
considers only those moves which do not lead to a reversal of the city order in which
a subtour is traversed. If subtours are reversed, one would have to re-calculate the
lenght of this subtour, leading to high computation times.

Note that, when applying ACO algorithms to the TSP, pheromone trails are stored
in a matrix with � � � �

�
entries (one for each arc). Because of pheromone trail evap-

oration (according to Formula 3), all the entries of this matrix have to be updated
after each iteration (this is not the case in ACS). Obviously, this is a very expen-
sive operation if large TSP instances with several hundreds of cities are attacked.
To speed up the pheromone update, in

���
AS we apply pheromone evaporation

only to arcs connecting a city

to cities belonging to

’s candidate list. This reduces

the cost of updating the pheromone trails to � � � �
.

5.1 Parameter settings and applied variants

In preliminary experiments we noted that, if only the iteration-best solution is
chosen for the pheromone trail update,

���
AS takes long time to converge and

to find very high quality solutions when applied to large instances; a discussion of
this issue can be found in [47]. Yet, when giving the global-best solution a high fre-
quency

� ���
for the pheromone trail update (let

� ���
indicate that every

� ���
iterations

23

� ��� is allowed to deposit pheromone), the initial exploration of the search space may
be rather limited and worse results are obtained. Then, the best performance was
obtained by using a mixed strategy in which

� ���
increases over time within a single

run. To realize this, we apply a specific schedule to alternate the pheromone trail
update between � ��� and � � � . In the first 25 iterations only � � � is used to update the
pheromone trails; we set

� ���
to 5 for ��� � � � � � (where

�
is the iteration counter),

to 3 for
� � � � � �%��� , to 2 for �%� � � � � ����� , and to 1 for

� � ����� . By gradu-
ally shifting the emphasis from the iteration-best to the global-best solution for the
pheromone trail update, we achieve a transition between a stronger exploration of
the search space early in the search to a stronger exploitation of the overall best
solution later in the run.

The other parameters were chosen as follows. We use " � ��� ants (all ants
apply a local search to their solution), � � � � �

, 8 � � , and 9 � � . During the
tour construction the ants use a candidate list of size 20. We set � max as proposed in
Section 4.2. Since here the solutions constructed by the ants are improved by ad-
ditional local search, we used somewhat tighter bounds on the allowed pheromone
trail strength by setting � min

� � max $ � � , which roughly corresponds to '
best

� � � ��� � .
In the following we will further examine whether for the hybrid algorithm us-

ing the pheromone trail limits is sufficient to achieve very high solution quality
or whether with additional diversification mechanisms based on pheromone trail
reinitialization a better solution quality can be achieved. In particular, we study two
further variants which differ in the degree of search diversification. In the first of
these, we reinitialize the pheromone trails to � max (this corresponds to setting

 � �
in Equation 12) whenever the pheromone trail strengths on almost all arcs not con-
tained in � ��� are very close to � min (as indicated by the average branching factor
[17] which is calculated every 100 iterations) and no improved solution could be
found for 50 iterations. After the restart, the schedule for

� ���
is applied as done at

the start of the algorithm. This variant will be referred to as
���

AS+ri (for reini-
tialization), while the original version without pheromone trail reinitialization will
be referred to as

���
AS-nri.

Even more search diversification is achieved if additionally after a pheromone
trail reinitialization, the best solution found since the reinitialisation of the phe-
romone trails is used instead of � ��� . This allows

���
AS to converge to another

very high quality solution. Still, � ��� could be better than the best solution found
after the reinitialisation. Thus, to re-focus the search around � ��� , we use � ��� for the
pheromone trail update if more than 250 iterations have been executed without a
reinitialization of the pheromone trails and for 25 iterations no improved solution
has been found. (Note that these values are chosen such that

���
AS may have al-

ready converged.) This latter version of
���

AS will be referred to as
���

AS+rs
(for restart).

5.2 Experimental results for symmetric TSPs

In this section we report on experimental results obtained with
���

AS-nri,
���

AS+ri, and
���

AS+rs on symmetric TSP instances from TSPLIB. The ex-

24

periments are performed on a Sun UltraSparc I 167MHz processors with 0.5MB
external cache and 192 MB RAM.

The computational results given in Table 7 show that
���

AS, in general, is
able to find very high quality solutions for all instances; furthermore, for almost
all instances

���
AS finds the optimal solution in at least one of the runs. This

is an encouraging results which shows the viability of the ant approach to gen-
erate very high quality solutions for the TSP. Note that the computational results
with local search are also much better than those obtained without local search,
as can be seen when comparing the computational results given in Table 7 with
those of Table 6. Additionally, the computation times with local search are much
smaller. When comparing the computational results of the three variants, we find
that
���

AS+rs performs best; on most instances it achieves the best average solu-
tion quality and the worst solution found with

���
AS+rs is typically much better

than for the other two variants. Only on instances d198 and fl1577 the average
solution quality of

���
AS-nri is slightly better.

���
AS-nri and

���
AS+ri

show a very similar performance. Only on instance lin318
���

AS+ri performs
significantly better than

���
AS-nri and found the optimal solution in all runs.

Hence, the stronger search diversification of
���

AS+rs is mainly responsible for
the improved performance.

According to these results,
���

AS is currently the best performing ant ap-
proach for the TSP. In particular, it shows better performance than ACS, when
comparing the computational results reported here to those presented in [12] or to
those of our own implementation of ACS using the same local search algorithm as
���

AS. One factor which may be responsible for this fact is that ACS concen-
trates the search too strongly around � ��� .
5.3 Experimental results with the Lin-Kernighan heuristic

The best performing local search algorithm with respect to solution quality for
symmetric TSPs is the Lin-Kernighan heuristic (LK) [28] which considers a vari-
able number of arcs to be exchanged. Yet, the LK heuristic is much more difficult
to implement than 2-opt or 3-opt, and careful fine-tuning is necessary to get it
to run very fast and produce high quality solutions [40,23]. Here, we used an LK
implementation provided by Olivier Martin to give an indication of the solution
quality which may be reached by using the LK local search in

���
AS.

The motivation for applying the LK heuristic is the observation made in [51] that
for genetic local search algorithms a much better solution quality is obtained with
the LK heuristic than by using 2-opt [51]. These results suggest that the solution
quality of

���
AS can be further increased using the LK heuristic. To confirm

this conjecture we present computational results for
���

AS with LK local search
allowing a maximum number of 5000 LK applications on each instance. Since not
as many local searches as with our 3-opt implementation can be done, we used
slightly different parameter settings than before. Most significantly, we use only
10 ants and the schedule for using the global-best for the pheromone update is
shortened. Here, we use � ���

���
for

� � � � , � ���
� � for ��� � � � � � , and � ���

� �

25

Table 7
Comparison of different variants of �
	�� – �� � Ant System on symmetric TSP in-
stances. Given are the instance name (the number in the name gives the problem dimen-
sion, that is, the number of cities), the algorithm used, the best solution, the average solu-
tion quality (its percentage deviation from the optimum in parentheses), the worst solution
generated, the average number of iterations

�
avg and the average time

�
avg to find the best

solution in a run, and the maximum allowed computation time
�
max. Averages are taken

over 25 trials for ��� � � � � , over 10 trials on the larger instances. Best average results are
printed in bold-face.

instance Algorithm Best Average Worst � avg
�
avg

�
max

d198

���
AS+rs

���
AS+ri

���
AS-nri

15780

15780

15780.3 (0.00%)

15780.4 (0.00%)

15780.2 (0.00%)

15781

15784

15781

121.2

134.2

106.7

54.9

61.7

59.9

170

lin318

���
AS+rs

���
AS+ri

���
AS-nri

42029

42029

42029

42029.0 (0.00%)

42029.0 (0.00%)

42061.7 (0.08%)

42029

42029

42163

131.16

139.0

77.9

87.8

94.2

65.9

450

pcb442

���
AS+rs

���
AS+ri

���
AS-nri

50778

50778

50778

50905.3 (0.25%)

50911.2 (0.26%)

50900.9 (0.24%)

50931

51047

50931

603.8

522.0

449.7

217.1

308.9

319.5

600

att532

���
AS+rs

���
AS+ri

���
AS-nri

27686

27686

27686

27701.9 (0.06%)

27707.9 (0.08%)

27708.6 (0.08%)

27709

27756

27741

481.0

335.8

289.4

521.8

387.3

309.6

1250

rat783

���
AS+rs

���
AS+ri

���
AS-nri

8806

8806

8806

8810.9 (0.06%)

8814.4 (0.10%)

8816.8 (0.12%)

8823

8837

8848

870.3

631.5

805.5

1336.8

965.2

1395.2

2100

pcb1173

���
AS+rs

���
AS+ri

���
AS-nri

56892

56896

56892

56906.8 (0.03%)

56956.0 (0.11%)

56946.3 (0.10%)

56939

57120

57040

1697.2

1669.2

1138.3

3171.2

3219.5

2051.0

5400

d1291

���
AS+rs

���
AS+ri

���
AS-nri

50801

50801

50801

50812.9 (0.02%)

50821.6 (0.04%)

50828.8 (0.05%)

50833

50838

50870

1747.8

1035.0

669.6

3203.7

1894.4

1206.9

5400

fl1577

���
AS+rs

���
AS+ri

���
AS-nri

22289

22286

22261

22305.6 (0.25%)

22311.0 (0.28%)

22271.8 (0.10%)

22323

22358

22279

1681.7

690.7

1409.2

5348.3

3001.8

4473.9

7200

for
� � � � . The other parameter settings are the same as before.

The computational results with respect to solution quality obtained by combining
���

AS with the LK heuristic are significantly better with respect to solution qual-
ity than those using our 3-opt implementation (see Table 8). Yet, the run-times
are higher due to the local search.

5.4 Experimental results for ATSPs

We applied the same versions of
���

AS also to the ATSP; the computational
results are given in Table 9. Here we only present results obtained with

���
AS-nri

and
���

AS+rs, being the computational results with
���

AS+ri almost identical

26

Table 8
Experimental results of ��� AS when using the Lin-Kernighan local search procedure.
Given are the best, the average, and the worst solution obtained averaged over 25 inde-
pendent runs for � � � � � � and 10 runs otherwise. We allowed a maximum of 5000 LK
applications. Additionally, are given the average number of iterations (

�
avg) to find the best

solution in a run, and the average time
�
avg to do so.

instance Best Average Worst � avg
�
avg

lin318 42029 42029.0 (0.0%) 42029 29.9 298.3

pcb442 50778 50778.0 (0.0%) 50778 65.7 978.9

att532 27686 27692.7 (0.002%) 27704 299.1 2444.6

rat783 8806 8806.5 (0.006%) 8809 345.4 1001.8

pcb1173 56892 56893.5 (0.003%) 56897 289.9 3581.7

Table 9
Comparison of ��� AS with and without pheromone trail reinitialization on some ATSP
instance. Given are the instance name (the number in the name gives the problem dimen-
sion, that is, the number of cities; an exception is instance kro124pwhich has 100 cities),
the algorithm used, the best solution, the average solution quality (its percentage deviation
from the optimum in parentheses), the worst solution generated, the average number of it-
erations

�
avg and the average time

�
avg to find the best solution in a run, and the maximally

allowed computation time
�
max. Averages are taken at least over 25 trials. Best average

results are printed in bold-face.

instance Algorithm Best Average Worst � avg
�
avg

�
max

ry48p

���
AS+rs

���
AS-nri

14422

14422

14422.0 (0.0%)

14422.0 (0.0%)

14422

14422

22.5

34.9

2.5

4.3
120

ft70

���
AS+rs

���
AS-nri

38673

38673

38673.0 (0.0%)

38686.6 (0.04%)

38673

38707

140.5

214.4

24.6

47.3
300

kro124p

���
AS+rs

���
AS-nri

36230

36230

36230.0 (0.0%)

36230.0 (0.0%)

36230

36230

22.9

23.9

6.2

7.4
300

ftv170

���
AS+rs

���
AS-nri

2755

2755

2755.0 (0.0%)

2757.8 (0.08%)

2755

2764

147.6

124.5

46.7

39.9
600

to those of
���

AS+rs. On the asymmetric instances
���

AS-nri and
���

AS+rs
show the same performance on instances ry48p and kro124p. Yet,

���
AS+rs

could solve the two instances ft70 and ftv170 in all runs to optimality, which
could not be achieved without the additional diversification mechanism based on
pheromone trail reinitialization. The reason for the performance difference between
���

AS-nri and
���

AS+rs may be that, despite the pheromone trail limits,
���

AS gets stuck at solutions corresponding to local minima with large attraction
regions and for an escape from these regions the currently best found solution has
to be strongly restructured. Since at convergence of

���
AS the arcs with maximal

amount of pheromone will be rather frequently chosen, by a reinitialisation of the
pheromone trails the chances of escaping from such attraction regions are higher.

27

5.5 Discussion and related work

According to the presented results,
���

AS is currently the best performing
ACO algorithm for the TSP. In particular, it shows better performance for symmet-
ric TSP instances than ACS while ACS and

���
AS reach the same level of per-

formance on ATSPs. In summary, the computational results with the three
���

AS
variants suggest that

� ��
for the TSP very high solution quality can be obtained with

���
AS,

�� ��
the best computational results are obtained when in addition to the

pheromone trail limits effective diversification mechanisms based on pheromone
re-initialization are used. In general, we found that an effective search diversifica-
tion is necessary to achieve best performance when applying ASe or ASrank with
additional local search.

Because the TSP is a standard benchmark problem for meta-heuristic algorithms,
it has received considerable attention from the research community. Here, we only
mention some of the most recent work, for a discussion of earlier work we re-
fer to the overview article by Johnson and McGeoch [23]. Currently, the iterated
LK heuristic (ILK) is the most efficient approach to symmetric TSPs for short to
medium run-times [23]. Recently, several new approaches and improved imple-
mentations have been presented which appear to perform as well or better than ILK
for longer run-times. Among these algorithms we find the genetic local search ap-
proach of Merz and Freisleben [16,33], a new genetic local search approach using a
repair-based crossover operator and brood selection by Walters [52], a genetic algo-
rithm using a specialized crossover operator, called edge assembly crossover, due
to Nagata and Kobayashi [38], and finally a specialized local search algorithm for
the TSP called Iterative Partial Transcription by Möbius et.al. [36]. Some of these
algorithms achieve better computational results than the ones presented here. For
example, the genetic local search approach presented in [33], which uses the LK
heuristic for the local search, reaches on average a solution of 8806.2 on instance
rat783 in 424 seconds on a DEC Alpha station 255 MHz. Obviously, the com-
putational results for

���
AS would also benefit from a faster implementation of

the LK heuristic like the one used in [33,23]. Yet, it is an open question whether the
performance (with respect to computation time) of the currently best algorithms for
symmetric TSPs can be reached.

Applied to asymmetric TSP instances, our computational results with respect
to solution quality compare more favorably to these approaches. For example, the
solution quality we obtain with

���
AS is better than that of the genetic local

search approach of [33] and the same as reported in [52], but at the cost of higher
run-times.

6 Experimental results for the QAP

In this section we report on the experimental results obtained with
���

AS
when applied to the QAP and compare it with other well known algorithms from
literature.

28

As outlined in Section 2.4, ACO algorithm applications to the TSP can straight-
forwardly be extended to the QAP. When applied to the QAP, in

���
AS we con-

struct solutions by assigning facilities to locations in random order. Differently
from the TSP application, for the QAP we do not use any heuristic information
for the solution construction. In fact, it has been shown that the heuristic informa-
tion is not necessary for the hybrid

���
AS algorithm which combines solution

construction with local search to obtain high quality solutions [45]. For example,
when running

���
AS on the TSP without heuristic information (which is simply

achieved by setting 9 � � in Equation 2) only a very slight solution degradation
could be noted. The

���
AS approach for the QAP is a straightforward extension

of the
���

AS+ri version which has been discussed in the previous section.

6.1 Parameter settings

Suitable parameter settings for
���

AS-QAP were determined in some prelim-
inary experiments. We use " �

� ants (all ants apply local search to the solution
they generate) and set � � � � � � 8 � � � � . The low number of ants is motivated
by the fact that local search for large QAP instances is computationally demand-
ing, but a reasonable number of iterations should be performed to learn the phe-
romone trails. The trail limits are determined according to Equation 7, that is, we
set � max

� �� ' , �
� �
 � � � , and according to Equation 11 by setting '

best
� � � � � � and

avg
� � $ � (at a choice point an ant has to assign — on average — a facility to one

of � $ � locations).
For
���

AS applied to the QAP we use two different local search algorithms.
One is the simple 2-opt algorithm briefly described in Section 3; in the fol-
lowing, we refer to the version of

���
AS using this local search algorithm as

���
AS � ������ . Alternatively, we apply short runs of the robust tabu search algo-

rithm (Ro-TS) [49], a possibility which was first considered in a genetic local search
algorithm [15]. This version is called

���
ASTS; it is motivated by the fact that

short runs of Ro-TS typically give higher quality solutions than 2-opt, although
at the cost of higher run times. In a sense, Ro-TS is a more powerful local search
algorithm and one may expect better results when using it.

We apply the following schedule to alternate the pheromone trail update between� gb and
� ib. For the first 9 iterations, we set

� gb to 3, for iterations 10 to 24 we use� gb � � , and from iteration 25 on
� gb � � ; as before,

� gb � & indicates that every &
iterations

� gb updates the trails. Note that
���

AS is rather robust to the particular
schedule chosen; the schedule given here is not fine-tuned at all. Because we are
actually using

���
AS+rs, we use

� ���
for the trail update if more than 30 cycles

have passed since the last pheromone trail reinitialization and for 5 iterations no
improved solution has been found.

6.2 Computational results

���
AS was applied to a wide range of QAP instances taken from QAPLIB.

We only used instances with ������� , since smaller instances are too easily solved.

29

Table 10
Experimental results for heuristic algorithms on QAP instances from classes

� � �
and

� ��� �
.

We give the average excess from the best known solutions over 10 independent runs of the
algorithms. Best results are printed in boldface. See text for details.

Problem
instance

Ro-TS GH HAS-QAP

���
AS-

QAPTS

���
AS-

QAP � ������
random problems with uniformly distributed matrix entries (i)

tai20a 0.108 0.268 0.675 0.191 0.428

tai25a 0.274 0.629 1.189 0.488 1.751

tai30a 0.426 0.439 1.311 0.459 0.966

tai35a 0.589 0.698 1.762 0.715 1.128

tai40a 0.990 0.884 1.989 0.794 1.509

tai50a 1.125 1.049 2.800 1.060 1.795

tai60a 1.203 1.159 3.070 1.137 1.882

tai80a 0.900 0.796 2.689 0.836 1.402

random flows on grids (ii)

nug30 0.013 0.007 0.098 0.013 0.039

sko42 0.025 0.003 0.076 0.032 0.051

sko49 0.076 0.040 0.141 0.068 0.115

sko56 0.088 0.060 0.101 0.075 0.098

sko64 0.071 0.092 0.129 0.071 0.099

sko72 0.146 0.143 0.277 0.090 0.172

sko81 0.136 0.136 0.144 0.062 0.124

sko90 0.128 0.196 0.231 0.114 0.140

For
���

ASTS we applied 250 times short Ro-TS runs of length
� � .
���

AS � ������
is then stopped after the same computation time as taken by

���
ASTS.

We compare the performance of
���

AS to the robust tabu search (Ro-TS) al-
gorithm [49], to a genetic hybrid (GH) method which uses short tabu search runs for
the local search [15], and to HAS-QAP [21], another ant-based algorithm. In [50]
it was shown that GH performed best the instances of classes

� !�
and

� (�
(see

Section 3), whereas tabu search algorithms like Ro-TS performed best on instances
of classes

����
and

� !�
. Ro-TS is allowed ���� � ,1� iterations, resulting in similar run-

times to
���

ASTS. In GH, 250 short robust tabu search runs of the same length
as in

���
ASTS are applied. Hence, the computation times are comparable. HAS-

QAP is allowed 1000 applications of a truncated first-improvement 2-opt local
search. Since in [21] it is detailed that the computation times for HAS-QAP are
similar to those of GH, the results of HAS-QAP are also roughly comparable with
respect to computation times to those of

���
AS. In fact, our own implementation

of that local search algorithm suggests that HAS-QAP takes roughly 75% of the
computation time

���
AS is given. The computational results for HAS-QAP and

GH are taken directly from [21].
The computational results are presented in Table 10 for instances of classes

��!�
and

� !�
, and in Table 11 for those of classes

� ��
and

�� (�
. In general, which

method performs best depends strongly on the instance class. For the instances
of classes

����
and

�� !�
the hybrids using short tabu search runs and Ro-TS show

30

the best performance;
���

AS � ������ and HAS-QAP perform significantly worse
than Ro-TS, GH, and

���
ASTS on instances of class (i) and slightly worse on

instances from class (ii).

Table 11
Experimental results for heuristic algorithms on QAP instances from classes

� ����� �
and

� � � � .
We give the average excess from the best known solutions over 10 independent runs of the
algorithms. “n.a.” indicates that an algorithm has not been applied to a specific instance.
Best results are printed in boldface. See text for details.

Problem
instance

Ro-TS GH HAS-QAP

���
AS-

QAPTS

���
AS-

QAP � ������
real-life instances (iii)

bur26a-h 0.002 0.043 0.0 0.006 0.0

kra30a 0.268 0.134 0.630 0.134 0.157

kra30b 0.023 0.054 0.071 0.044 0.066

ste36a 0.155 n.a. n.a. 0.061 0.126

ste36b 0.081 n.a. n.a. 0.0 0.0

randomly generated real-life like instances (iv)

tai20b 0.0 0.0 0.091 0.0 0.0

tai25b 0.0 0.0 0.0 0.0 0.0

tai30b 0.107 0.0003 0.0 0.0 0.0

tai35b 0.064 0.107 0.026 0.051 0.0

tai40b 0.531 0.211 0.0 0.402 0.0

tai50b 0.342 0.214 0.192 0.172 0.009

tai60b 0.417 0.291 0.048 0.005 0.005

tai80b 1.031 0.829 0.667 0.591 0.266

tai100b 0.512 n.a. n.a. 0.230 0.114

On the real-life (like) instances, the performance characteristics of the algorithms
are very different. Here,

���
AS � ������ and HAS-QAP show much improved per-

formance and, in fact,
���

AS � ������ is the best algorithm for instances taixxb
and bur26x. For example, for all instances bur26x the best known solution value
is found in every run, something that could not be achieved neither by

���
ASTS

nor by Ro-TS. Additionally,
���

AS � ������ finds these best known solutions (which
are conjectured to be optimal) on average in 3.8 seconds on a SUN UltraSparc I pro-
cessor (167Mhz) while Ro-TS finds the best solutions in each run only after 18.5
seconds on average. For instances taixxb, Ro-TS performs, except for the small-
est instances, significantly worse than the

���
AS hybrids or HAS-QAP. Only on

kra30x and ste36a Ro-TS can catch up with the other algorithms.
Interestingly, using a simple local search procedure is sufficient to yield very high

quality solutions on the real-life (like) instances and, for example, for the instances
taixxb with � � � � in almost every run the best-known solutions, which are
conjectured to be optimal, are found. Hence, for the instances with a relatively high
fitness-distance correlation it seems to be better to apply more often a local search to
identify promising regions of the search space. In fact, on these instances

���
AS

is able to efficiently exploit the structure of the real-life (like) QAP instances and

31

is able to guide the local search towards very high quality solutions.
One might conjecture that the flow (distance) dominance could be used to iden-

tify which algorithm should be used on a particular instance. If the flow and dis-
tance dominance are low, the best choice appears to be the use algorithms like
���

ASTS, GH, or Ro-TS, while for high flow and/or distance dominance, the
best would be to apply a hybrid algorithm with a fast local search. Although such
a simple rule would work reasonably well, exceptions do occur. For example, al-
though instance ste36a has the highest flow dominance among the real-life in-
stances,

���
ASTS and even Ro-TS give slightly better average performance than

���
AS � ������ . Thus, more sophisticated measures of the problem structure have

to be developed to predict the relative performance of different algorithmic ap-
proaches more reliably.

7 Conclusions

Recent research in ACO algorithms has strongly focused on improving the per-
formance of ACO algorithms. In this paper we have presented

�����
–
��� � Ant

System, an algorithm based on several modifications to AS which aim
� ��

to ex-
ploit more strongly the best solutions found during the search and to direct the ants’
search towards very high quality solutions and

�� ��
to avoid premature convergence

of the ants’ search. We have justified these modifications by a computational study
of
���

AS and have shown that all main modifications are important for obtaining
peak performance. Our results demonstrate that

���
AS achieves a strongly im-

proved performance compared to AS and to other improved versions of AS for the
TSP; furthermore,

���
AS is among the best available algorithms for the QAP.

One of the main ideas introduced by
�����

–
��� � Ant System, the utilization

of pheromone trail limits to prevent premature convergence, can also be applied in
a different way, which can be interpreted as a hybrid between

���
AS and Ant

Colony System (ACS): During solution construction, the ants in ACS make the
best possible choice, as indicated by the pheromone trail and heuristic information,
with a fixed probability ' and with probability ��� ' they make a probabilistic
choice as in Equation 2. With high parameter values of ' and the fact that only the
iteration-best or the global-best solution is chosen for the trail update, a very strong
exploitation of the search history results. When combining ACS’s action choice
rule with tight pheromone trail limits, we observed a very promising performance
(see [48]). Apart from the TSP and the QAP, this latter version has also been applied
to the permutation Flow Shop Problem [43] and to the Generalized Assignment
Problem [39] obtaining very good results.

One feature
���

AS has in common with other improved AS algorithms is the
fact that the best solutions found during the search are strongly exploited to direct
the ants’ search. We have related this feature to recent results of the analysis of
search space characteristics for combinatorial optimization problems. Earlier re-
search has shown that there exists a strong correlation between the solution quality
and the distance to a global optimum for the TSP and for some other problems.

32

Here, we performed a fitness-distance correlation analysis for the QAP and found
that for real-life and randomly generated real-life like QAP instances there is a sig-
nificant correlation between the quality of candidate solutions and their distance to
optimal solutions while this is not the case for instances with matrix entries gener-
ated according to uniform distributions. This suggests that for the first two instances
classes

���
AS may provide an effective guidance mechanism to direct the search

towards the best solutions while this is not the case on the latter instance class. Yet,
exploitation of the best solutions is not the only remedy to achieve very high per-
forming ACO algorithms. To avoid premature convergence, the exploitation of the
best solutions has to be combined with effective mechanisms for performing search
space exploration.

���
AS explicitly addresses this aspect, which is possibly the

main reason why it is currently one of the best performing ACO algorithms.
There are several issues which seem to be worth further investigation. At the

moment, several ACO algorithms show a promising performance on various com-
binatorial optimization problems. We strongly believe that future ACO applications
will combine features of these ACO algorithms. Here,

���
AS may be a very good

starting point, since it is one of the best ACO algorithms for combinatorial opti-
mization problems which are often used as benchmarks to test algorithmic ideas.
An example for such combinations between several ACO algorithms are the hy-
brids between

���
AS and ACS mentioned above. Further promising ideas are

the use of lower bounds on the completion of partial solutions for the computation
of the heuristic values as proposed in the ANTS algorithm [29] or the use of rank-
ing for the trail updates [6]. Another issue deals whith the setting of parameters
in ACO algorithms. In our experience, the parameters given here for the TSP and
QAP applications performed very well over a wide range of instances. Neverthe-
less, in other applications adaptive versions which dynamically tune the parameters
during algorithm execution may increase algorithm robustness. Finally, we defi-
nitely need a more thorough understanding of the features the successful applica-
tion of ACO algorithm depend on and how ACO algorithms should be configured
for specific problems. Particularly, the following questions need to be answered:
Which solution components should be used? What is the best way of managing
the pheromones? Should the ACO algorithm always be combined with local search
algorithms? Which problems can be efficiently solved by ACO algorithms? To an-
swer some of these questions, the investigation of search space characteristics and
their relation to algorithm performance may give useful insights.

In this article, we have taken initial steps in addressing these issues and provided
starting points and directions for further research. It is our hope that by following
these routes, ultimately the performance and applicability of ACO algorithms can
be further improved.

Acknowledgements

We thank Marco Dorigo and Gianni Di Caro for the fruitful discussions on Ant
Colony Optimization. Special thanks also to Olivier Martin for making available

33

his implementation of the Lin-Kernighan heuristic and for discussions on the sub-
ject of this research. A large part of this research was done while both authors
were at FG Intellektik, TU Darmstadt in Germany and we thank Wolfgang Bibel
for the support during this time, the members for the Intellectics group for discus-
sions, and the members of the FG Inferenzsysteme which allowed us to perform
much of the experimental work on their hardware. This work was in part supported
by a Marie Curie Fellowship awarded to Thomas Stützle (CEC-TMR Contract No.
ERB4001GT973400), a fellowship of the Deutsche Forschunggemeinschaft (DFG)
via Graduiertenkolleg ISIA awarded to Thomas Stützle, and a Postdoctoral Fellow-
ship awarded by the University of British Columbia to Holger H. Hoos.

References

[1] J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing, 4 (1992) 387–411.

[2] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella. Results of
the first international contest on evolutionary optimisation. In Proceedings of the
IEEE International Conference on Evolutionary Computation (ICEC’96), (IEEE Press,
Piscataway, USA, 1996) 611–615.

[3] K. D. Boese. Models for iterative global optimization. PhD thesis, Computer Science
Department, University of California, Los Angeles, USA, 1996.

[4] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique for
combinatorial global optimization. Operations Research Letters, 16 (1994) 101–113.

[5] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research, 89 (1999).

[6] B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank based version of the ant
system – a computational study. Central European Journal for Operations Research
and Economics, 7 (1999) 25–38.

[7] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, 9 (1998) 317–
365.

[8] M. Dorigo. Optimization, learning, and natural algorithms (in Italian). PhD thesis,
Dip. Elettronica, Politecnico di Milano, Italy, 1992.

[9] M. Dorigo, E. Bonabeau, and G. Theraulaz. From Natural to Artificial Swarm
Intelligence. Future Generation Computer Systems, this issue.

[10] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, (McGraw-Hill, London,
UK, 1999) 11–32.

[11] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for distributed discrete
optimization. Artificial Life, 5 (1999) 137–172.

34

[12] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1 (1997) 53–66.

[13] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.
Technical Report 91-016, Dip. Elettronica, Politecnico di Milano, Italy, 1991.

[14] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B,
26 (1996) 29–42.

[15] C. Fleurent and J. A. Ferland. Genetic hybrids for the quadratic assignment problem.
In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems,
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 16
(American Mathematical Society, 1994) 173–187.

[16] B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of the IEEE International
Conference on Evolutionary Computation (ICEC’96), (IEEE Press, Piscataway, USA,
1996) 616–621.

[17] L. M. Gambardella and M. Dorigo. Ant-Q: A reinforcement learning approach to the
traveling salesman problem. In Proceedings of the Eleventh International Conference on
Machine Learning, (Morgan Kaufmann, San Francisco, USA, 1995) 252–260.

[18] L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by
ant colonies. In Proceedings of the IEEE International Conference on Evolutionary
Computation (ICEC’96), (IEEE Press, Piscataway, USA, 1996) 622–627.

[19] L. M. Gambardella and M. Dorigo. HAS-SOP: Hybrid ant system for the sequential
ordering problem. Technical Report IDSIA 11-97, IDSIA, Lugano, Switzerland, 1997.

[20] L. M. Gambardella, É. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, (McGraw-Hill, London, UK, 1999)
63–76.

[21] L. M. Gambardella, É. D. Taillard, and M. Dorigo. Ant colonies for the QAP. Journal
of the Operational Research Society, 50 (1999) 167–176.

[22] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory
of � �

-completeness. (Freeman, San Francisco, USA, 1979).

[23] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case study
in local optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in
Combinatorial Optimization, (John Wiley & Sons, Chichester, England, 1997) 215–310.

[24] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In L.J. Eshelman, editor, Proceedings of the 6th International
Conference on Genetic Algorithms, (Morgan Kaufman, San Francisco, USA, 1995) 184–
192.

35

[25] S. Kirkpatrick and G. Toulouse. Configuration space analysis of travelling salesman
problems. Journal de Physique, 46 (1985) 1277–1292.

[26] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The traveling
salesman problem. (John Wiley & Sons, Chichester, England), 1985.

[27] S. Lin. Computer solutions for the traveling salesman problem. Bell Systems
Technology Journal, 44 (1965) 2245–2269.

[28] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the travelling
salesman problem. Operations Research, 21 (1973) 498–516.

[29] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering.
To appear.

[30] V. Maniezzo, M. Dorigo, and A. Colorni. The ant system applied to the quadratic
assignment problem. Technical Report IRIDIA/94-28, Université de Bruxelles, Belgium,
1994.

[31] O. Martin and S. W. Otto. Combining simulated annealing with local search heuristics.
Annals of Operations Research, 63 (1996) 57–75.

[32] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the traveling
salesman problem. Complex Systems, 5 (1991) 299–326.

[33] P. Merz and B. Freisleben. Genetic local search for the TSP: New results.
In Proceedings of the IEEE International Conference on Evolutionary Computation
(ICEC’97), (IEEE Press, Piscataway, USA, 1997) 159–164.

[34] P. Merz and B. Freisleben. Fitness Landscapes and Memetic Algorithm Design. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. (McGraw-Hill,
London, UK, 1999).

[35] R. Michel and M. Middendorf. An island based ant system with lookahead for the
shortest common supersequence problem. In A.E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel, editors, Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature, Lecture Notes in Computer Science, Vol. 1498 (Springer
Verlag, Berlin, Germany, 1998) 692–708.

[36] A. Möbius, B. Freisleben, P. Merz, and M. Schreiber. Combinatorial optimization by
iterative partial transcription. Physical Review E, 59 (1999) 4667–4674.

[37] H. Mühlenbein. Evolution in time and space – the parallel genetic algorithm. In
G. J. E. Rawlings, editor, Foundations of Genetic Algorithms, (Morgan Kaufmann, San
Francisco, USA, 1991) 316–337.

[38] Y. Nagata and S. Kobayashi. Edge assembly crossover: A high-power genetic
algorithm for the traveling salesman problem. In Thomas Bäck, editor, Proceedings
of the Seventh International Conference on Genetic Algorithms (ICGA’97), (Morgan
Kaufmann, San Francisco, USA, 1997) 450–457.

36

[39] H. Ramalhinho Lourenço and D. Serra. Adaptive approach heuristics for the
generalized assignment problem. Technical Report Economic Working Papers Series
No.304, Universitat Pompeu Fabra, Dept. of Economics and Management, Barcelona,
Spain, May 1998.

[40] G. Reinelt. The traveling salesman: Computational solutions for TSP applications,
Lecture Notes in Computer Science, Vol. 840 (Springer Verlag, Berlin, Germany, 1998).

[41] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM,
23 (1976) 555–565.

[42] P. F. Stadler. Towards a theory of landscapes. Technical Report SFI–95–03–030,
Santa Fe Institute, USA, 1995.

[43] T. Stützle. An ant approach to the flow shop problem. In Proceedings of the 6
� �

European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), vol. 3,
(Verlag Mainz, Aachen, Germany, 1998) 1560–1564.

[44] T. Stützle. �
	�� – ���� Ant System for the quadratic assignment problem.
Technical Report AIDA–97–4, FG Intellektik, TU Darmstadt, Germany, July 1997.

[45] T. Stützle. Local search algorithms for combinatorial problems — analysis,
improvements, and new applications. PhD thesis, Department of Computer Science,
Darmstadt University of Technology, Darmstadt, Germany, 1998.

[46] T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment problem. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, (McGraw-Hill,
London, UK, 1999) 33–50.

[47] T. Stützle and H. H. Hoos. The � 	�� – �� � ant system and local search
for the traveling salesman problem. In T. Bäck, Z. Michalewicz, and X. Yao,
editors, Proceedings of the IEEE International Conference on Evolutionary Computation
(ICEC’97), (IEEE Press, Piscataway, USA, 1997) 309–314.

[48] T. Stützle and H. H. Hoos. � 	�� – � � ant system and local search for
combinatorial optimization problems. In S. Voss, S. Martello, I.H. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization, (Kluwer Academic Publishers, Boston, 1999) 313–329.

[49] É. D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17 (1991) 443–455.

[50] É. D. Taillard. Comparison of iterative searches for the quadratic assignment problem.
Location Science, 3 (1995) 87–105.

[51] N. L. J. Ulder, E. H. L. Aarts, H.-J. Bandelt, P. J. M. van Laarhoven, and E. Pesch.
Genetic local search algorithms for the travelling salesman problem. In H.-P. Schwefel
and R. Männer, editors, Proceedings 1st International Workshop on Parallel Problem
Solving from Nature, Lecture Notes in Computer Science, Vol. 496 (Springer Verlag,
Berlin, Germany, 1998) 109–116.

37

[52] T. Walters. Repair and brood selection in the traveling salesman problem. In A.E.
Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of Parallel
Problem Solving from Nature – PPSN V, Lecture Notes in Computer Science, Vol. 1498
(Springer Verlag, Berlin, Germany, 1998) 813–822.

[53] E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biological Cybernetics, 63 (1990) 325–336.

Short Bio Thomas Stützle

Thomas Stützle received the Master of Science in Industrial Engineering and
Management Science from the University of Karlsruhe, Germany in 1994 and a
PhD in Computer Science from Darmstadt University of Technology in 1998. From
1998 to February 2000 he was working as a Marie Curie fellow at IRIDIA, Univer-
sité Libre de Bruxelles and is now assistant professor at the Computer Science De-
partment of Darmstadt University of Technology. His research interests are meta-
heuristics, combinatorial optimization, and empirical analysis of algorithms.

Short Bio Holger Hoos

Holger H. Hoos works on different topics in AI and Computer Music since
1994. He received his Ph.D. 1998 from the Department of Computer Science at
the Darmstadt University of Technology (Germany); his Ph.D. thesis on stochas-
tic local search algorithms was recently awarded with the 1999 Best Dissertation
Award of the German Informatics Society. Since 1998, Holger Hoos is working as
a Postdoctoral Fellow at the University of of British Columbia (Canada).

38

Correspondence:
Thomas Stützle
IRIDIA
Université Libre de Bruxelles
Avenue Franklin Roosevelt 50
CP 194/6
1050 Brussels
Belgium
Phone: + 32 2 - 6503167
Fax: + 32 2 - 6502715
Email: tstutzle@ulb.ac.be

Co-author:
Holger H. Hoos
University of British Columbia
Computer Science Department
2366 Main Mall
Vancouver, BC, V6T 1Z4
Canada
Phone: + 1 604 - 822-5109
Fax: + 1 604 - 822-5485
Email: hoos@cs.ubc.ca

39

