A few ideas on making Ant System distributed

Author: Casper Joost Eyckelhof, casper@eyckelhof.nl

In this short paper we will present a few ideas on how to implement Ant System in a distributed environment to improve the performance. No actual experiments have been done, nor was any idea implemented. These ideas are the result of a discussion and some more thinking afterwards.

Ant System

Ant System (AS) is an algorithm [Bon99], inspired by the ways ants organize themselves in nature, to optimize certain hard problems. The classic example tries to solve the traveling salesman problem (TSP) and is thus called AS-TSP. Without going into too much detail, we will explain the way the algorithm works. Assume a problem with n cities and k ants. Every ant makes a tour, visiting each city exactly once. In each city the ant makes a decision on where to go next with a certain probability based on visibility and pheromone level between that city and every other city. When all ants have completed their tour, the new pheromone levels in the problem are calculated; a certain percentage of pheromones evaporates and new pheromones are deposited based on the length of the tours that visited that road (shorter tour implies more pheromones). The roads on the tour of the best ant, are given an additional pheromone dose.

In pseudo code:

init()

while not stop do

 foreach ant k do

 find_tour() (by applying n times find_next_city)

 end foreach

 foreach edge(i,j) do

 update_pheromones(i,j)

 end foreach

end while

print result

Synchronous parallel algorithm

In their paper Bullnheimer et. al. [Bul98] present a trivial parallelization for AS-TSP by giving each ant its own ‘worker’. Every ant finds a tour and sends the result to a master server. When the master server has all results available, it recalculates the environment and sends this updated environment back to all workers. This parallelizes the most difficult loop, but has the disadvantage that all ants have to wait for each other every iteration. Besides that the overhead in network traffic is localized in time, which will produce spikes, even worsening the situation.

Partially Asynchronous parallel algorithm

The next option suggested by Bullnheimer et. al. is basically to have local copies of the environment on each worker and keep running for a number of iterations after which a global synchronization takes place, using a master server. This is done mainly to reduce both volume and frequency of the communication overhead.

Asynchronous parallel algorithm

We suspect that by changing the former concept just slightly, we can implement an asynchronous algorithm. It probably creates more overhead, but the traffic is much more homogeneous is time, thus imposing no bottlenecks.

Each node in the network (which can run one or more ants) has a local copy of the environment, running as a daemon, listening to multicasts from the master server (Queen). Each ant can access this local environment in an efficient way (e.g. sharing a data structure between threads). After every iteration the ant sends its result to the queen. This will generate spikes in traffic at first, but after a while these messages will spread out because not every iteration of every ant takes the same amount of time to calculate. Another option is to intentionally not synchronize the start time of the nodes.

The queen will multicast updates in the environment to the nodes. The frequency of these updates has to be determined and can be based on several aspects. It might even be feasible to multicast after every ant reported in, but versions using timeslots or based on events (e.g. better global tour found) are probably better.

There are two pitfalls that might even turn out to make this version equivalent to the “Partially Asynchronous parallel algorithm”. First we assume no synchronization, which is not entirely true: there is a need for locking when we update the local copy of the environment. This can be very fine-grained locking (one cell of the pheromone matrix at a time) or we can update the entire matrix between iterations in a near atomic way (daemon builds a new matrix and we change 1 pointer). The other problem is the overhead we create with the environment daemon all CPU time spent on the daemon is lost for the ant, but given the simplicity of such a daemon we assume that the resulting overhead will not be a problem.

The resulting algorithm will not have identical copies of the environment on all nodes at all times, but it will be very close. This is not at all a problem: ant system has been proven to be a very robust algorithm, and we do not suspect a small disturbance like this to have a noticeable effect.

A real network of cities

A completely different approach would be not to distribute the ants (and pass the environment around in messages) but to distribute the cities and pass the ants as messages. This requires a whole different kind of optimization, but it might be quite efficient. The easiest implementation is to have as many computers as cities, but this can be generalized to n cities per computer.

Every computer has to be initialized with the values of the distance to every other city and a sparse pheromone matrix (just one row; the amount between itself and every other city). Based on this state and the blacklist of visited cities inside every ant, the node can decide (very fast) where the ant should go. The ant itself only has to contain an id and state information about the (partial) route it took through the network (and maybe some extra information for optimization, like length-of-current-tour).

The difficulty in this approach lies in updating the environment. Introducing a master server in this architecture would solve the problem, but we think that a solution without a ‘queen’ is possible.

The update of the environment can happen based on wall clock time or after a certain number of ants have passed the city. Evaporation of pheromones is easy, because no additional information is needed. Updating the trails is the tricky part: every node needs to know the length and route of each tour and the global best tour.

There are several strategies to accomplish this. Firstly we could let every ant backtrack his route after he completed it, this almost doubles the network traffic but is conceptually a very clean way of doing it. The ants almost lay the trail themselves although it required a double pass through the network. If a special flag is set in the ant, the nodes can route it accordingly and store certain fields locally before passing the ant to the next node.

Another option is multicasting the results when an ant completes a tour. This reduces network traffic, but requires some kind of daemon again to listen to those multicasts.

A third, and probably much worse, solution is using a system that is much more like real ant colonies and deviates from the ant system algorithm.

By using pulses on which to operate, we can simulate real behavior: when a node i sends an ant to node j, it is stored in moving queue at distance(i,j) pulses away. When the ant reaches the front of the queue, it is routed to the next node.

When the ant is received, the pheromones on the incoming edge are updated, and when sent away the pheromones on the outgoing edge are updated.

This update can be done by reading the length of the last tour from the ant packet and using the distance between the node and the former node. The biggest disadvantage is the way pulses introduce synchronization. Tweaking the pulse rate for a specific setup can reduce the problems, but not solve them. An option is to have each node generate as much pulses as it possibly can (unsynchronized pulses). We have a strong feeling that this might actually work very well, but no proof until someone tests this hypothesis.

Conclusion

We presented four ways to run ant systems distributed. Others have tested two of them and both have their advantages. The two newly presented systems are completely untested and are based on a combination of common sense, gut feeling and some educated guessing. Until someone decides to actually implement and benchmark these solutions, we cannot claim any actual results.

References

[Bul98]
Bullnheimer B., G. Kotsis, C. Strauss (1998). Parallelization Strategies for the Ant System. In: R. De Leone, A. Murli, P. Pardalos, G. Toraldo (eds.), High Performance Algorithms and Software in Nonlinear Optimization; series: Applied Optimization, Vol. 24, Kluwer:Dordrecht, 87-100.

[Bon99]
E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999

